88 research outputs found

    Exploration of essential oils as alternatives to conventional fungicides in lupin cultivation

    Get PDF
    Lupin (Lupinus L.) has the potential to become a true alternative for soybean as protein source, especially in the more temperate regions in the world. However, diseases such as anthracnose (Colletotrichum lupini), gray mold (Botrytis cinerea), and root rot or brown spot (Pleiochaeta setosa) are important threats for lupin production, leading to yield and quality losses. Although conventional fungicides offer a solution to these problems, there is a growing interest in the use of alternative (biological) treatments. In this research, the applicability of four pure plant essential oils (clove oil, juniper oil, tea tree oil, and thyme essential oil) and timbor® (a Thymus vulgaris-derived plant extract) as alternatives for synthetic fungicides towards the lupin pathogens—C. lupini, B. cinerea, and P. setosa—was investigated. The anti-fungal effect of juniper oil was limited, whereas the other oils and timbor® clearly suppressed the growth and spore germination of all fungi. The in vitro experiments revealed that thyme essential oil and timbor® were most effective to inhibit conidial germination and mycelium growth. Furthermore, the results of the pot experiments demonstrated that these Thymus-derived compounds were able to suppress P. setosa brown spot and root rot symptoms. Additional trials are necessary to evaluate the effect of these compounds under field conditions. However, based on these in vitro and pot experiments, it can be concluded that pure essential oils and Thymus-derived plant extracts are promising anti-fungal agents, having the potential to become true alternatives for conventional fungicides in lupin cultivation. To the best of our knowledge, this is the first study demonstrating the potential of plant-derived compounds to treat the main diseases affecting lupin production

    Genetic characterization of fungal biodiversity in storage grains : towards enhancing food safety in northern Uganda

    Get PDF
    Worldwide fungal contamination leads to both quantitative and qualitative grain losses during crop growth and/or storage. A greater proportion of grains contamination with toxins often occurs in sub-Saharan Africa, where control measures are limited. We determined fungal diversity and their toxin production ability in household grains meant for human consumption to highlight the risk of mycotoxin exposure among people from northern Uganda. The study underlines the high diversity of fungi that group into 15 genera; many of which are plant pathogens with toxigenic potential. Fusarium verticillioides was the most common fungal species isolated from household grains. The study also indicates that northern Uganda is favored by a high proportion of toxigenic isolates of F. verticillioides, F. andiyazi, and F. proliferatum, which are characterized by a high fumonisins production capability. The fumonisins production ability was not dependent on the species, grain types, and haplotype group to which the isolates belong. The contamination of most household grains with fungi capable of producing a high amount of toxin shows that most people are exposed to an elevated amount of mycotoxins, which shows the frequent problems with mycotoxins that have been reported in most parts of sub-Saharan Africa

    Mycotoxin profile of staple grains in northern Uganda : understanding the level of human exposure and potential risks

    Get PDF
    Mycotoxins are toxic metabolites of fungi that contaminate food and feed. These toxins can cause acute and chronic health threats to both humans and animals. In sub-Saharan Africa, exposure to mycotoxins is chronic and under-reported. The study explores contamination of grains (sorghum, maize, groundnut, millet) with four mycotoxins (aflatoxins, fumonisins, ochratoxins, and deoxynivalenol) and dietary exposure to quantify associated health risks in northern Uganda. The results underscored the high prevalence of mycotoxins, only 7% of the samples were free from toxins. Sorghum grains seemed to be the most susceptible to toxin contamination, whereas in millet the toxin levels were, in general, the lowest. Besides, the results showed that the majority of grains were contaminated with more than one mycotoxin and that the toxin pattern was dependent on the grain type. Co-contamination with all four mycotoxins mainly occurred in sorghum grains. Besides the differences between grain types, there were also significant differences in toxins levels depending on the district where the grains came from. The estimated daily intakes for the mycotoxins were far above the recommended tolerable daily intake (TDI), especially for sorghum. So, it can be concluded that the majority of the people whose diet is mainly based on sorghum are exposed to multiple mycotoxins in a single diet and at a dose above the TDI. Such exposure to multiple mycotoxins elevates the associated health risks. Millet grains, which were the least contaminated, can provide an alternative to sorghum. However, to tackle the mycotoxin problem, other control and prevention mechanisms, e.g. good agricultural practices and optimized storage must be further explored and implemented in sub-Saharan Africa

    Deoxynivalenol content in wheat dust versus wheat grain: a comparative study

    Get PDF
    The present study, set up in the growing season 2011-2012, was designed to obtain quantitative data on the occurrence of deoxynivalenol in wheat grain and the corresponding wheat dust. The field experiment consisted of a complete randomised block design with five wheat varieties sown on a field on which maize was grown in the previous season. The impact of the tillage method and the influence of the wheat variety resistance on the deoxynivalenol content of wheat and wheat dust were investigated. The accumulation of deoxynivalenol in wheat dust was confirmed and a sigmoidal relationship between the deoxynivalenol content in wheat dust versus wheat grain was determined. Deoxynivalenol reduction was obtained by ploughing and by sowing moderately resistant wheat varieties. As wheat dust provides equal results and solves the problem of heterogeneity during sampling of conventional wheat matrix, the sampling of wheat dust can be considered as a promising alternative

    Inter- and intrafield distribution of cereal leaf beetle species (coleoptera : chrysomelidae) in Belgian winter wheat

    Get PDF
    Cereal leaf beetles (CLBs), a group of chrysomelid beetles of the genus Oulema (Coleoptera: Chrysomelidae), are well-known pest insects of small-grain cereals in many countries of the Northern hemisphere. Due to the small differences in morphology of species within this genus, classification up to species level remains a challenging task. Since an accurate view of species composition is important for developing targeted control strategies, the goal of this study was to unravel the Oulema species composition in Flanders' wheat fields. During three subsequent years at a series of different fields, Oulema species were collected and classified up to species level (2016: 28 fields, 2017: 30 fields, and 2018: 23 fields). This study reveals that the population consists of four different species: Oulema melanopus, Oulema duftschmidi, and Oulema obscura were most frequently encountered, while Oulema rufocyanea was only marginally present. Furthermore, the population was highly dynamic, as the population share of each species varied between different growing seasons and between the various sampling events within each season. The distance from the field edge had a minor influence on the species composition, but the abundance of beetles increased with the distance to the field edge. A discriminant analysis revealed that based on the measurements of various body parts, an accurate classification up to species level is possible. In conclusion, we observed that the population densities fluctuated within and between years, resulting in variable incidence of CLB in winter wheat fields in the Flanders region

    Fungal endophytes control Fusarium graminearum and reduce trichothecenes and zearalenone in maize

    Get PDF
    Fusarium graminearum can cause Giberella Ear Rot (GER) and seedling blight in maize, resulting in major yield losses. Besides GER, the infected grains are consequently contaminated with multiple mycotoxins of F. graminearum. Zearalenone and trichothecenes, such as deoxynivalenol and its acetylated forms, are among the major mycotoxins associated with F. graminearum infection in maize. In the current work, we explored the effect of the endophytic fungal genera of Epicoccum and Sordaria, to control F. graminearum infection in comparative trials with Piriformospora spp., an elusive endophytic genus. Furthermore, we investigated the effect of these endophytes on zearalenone, deoxynivalenol, and 15-acetyldeoxynivalenol levels using in vitro and in planta assays. As plants are endowed with several detoxification mechanisms comprising e.g., glucosylation of trichothecenes, the effect of the isolated fungal endophytes on the deoxynivalenol-3-glucoside level was also assessed. In general, results showed a considerable variability in the antifungal activity, both among species and among isolates within one species. Additionally, the effect on mycotoxin levels was variable, and not necessarily related to the antifungal activity except for zearalenone levels which were consistently reduced by the endophytes. These results highlight the great potential of certain endophytic fungal strains as new biocontrol agents in agricultural science
    • …
    corecore